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Up close & personal 
with atoms & molecules

At around 460 B.C. based on thoughts of his mentor, Leucipus, 

did a Greek philosopher, Democritus, elaborate on the idea of 

atoms extensively. He was contemplating whether it would be 

possible to break matter again and again down to a level where it 

is ‘uncuttable’. He coined the term ‘Atomos’ (Greek), the smallest 

indivisible particle of matter. Unfortunately, the atomic ideas 

of Democritus, however, had no lasting effects since Aristotle 

dismissed the atomic idea as worthless and established his own 

view describing matter which persisted well into the renaissance. 

Indeed, it took mankind 2,000 years until John Dalton, an English 

natural philosopher, in 1803 performed a series of experiments 

with various chemicals to show that matter seems to consist of 

elementary particles. Again, more than 100 years later when a 

fairly good understanding of the properties of the atom existed, 

it was Erwin Schroedinger in 1926, in the course of getting the 

grips on to quantum mechanics, to propose that atoms behave 
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to an extent like waves and described the electrons as a three-

dimensional waveform, rather than just firm particles. As a 

consequence, when two conductive surfaces are brought into close 

proximity, where the electron wavefunctions of the atoms overlap 

and, when a voltage is applied, electrons start to ‚tunnel‘ causing a 

current to flow. It is this quantum phenomena that 50 years later in 

1981 led to a new type of microscope enabling to image individual 

atoms for the first time in a three dimensional representation with 

unprecedented resolution.

Scanning tunneling microscope
The scanning tunneling microscope (STM), was introduced to the 

scientific community in 19821 (Fig. 1a). This new type of microscope 

does not use optics to image surfaces, but a sharp biased metal tip is 

brought into a distance of a few angstroms to a conductive surface. 

The tiny gap between tip and surface is maintained by keeping 

the flow of quantum mechanical tunneling current constant. The 

exponential dependency of the tunneling current gives the device its 

perpendicular sensitivity, moving the tip just by one atomic diameter, 

the current changes by a factor of thousand2 (Fig. 1b). Lateral resolution 

stems from the fact that the tunnel current is confined to the foremost 

atom of the tip and its counterpart of the surface under investigation. 

Scanning the device in two dimensions over the surface a three 

dimensional representation of the surface is achieved on the atomic 

scale. Soon after its invention, a technically refined version of the 

STM (Fig. 1c) proved its capability to clarify one of the most intriguing 

surface-science-related problems at that time, namely the arrangement 

of silicon atoms on the Si(111)7x7 surface3 (Fig. 1d). These images 

provided solid experimental evidence in direct space for one of the 

theoretically suggested models.  

Fig. 1 Three generations of STMs. For coarse adjustment a piezo-driven positioning stage called ‘louse’ has been used. (a) 1st  generation STM with magnetic levitation 
damping using a superconducting lead bowl. (b) With this instrument the exponential dependence of the tunneling current on distance was measured in 1981. (c) 
2nd generation STM with eddy-current damping system using SmCo magnets. (d) With this microscope the Si(111) 7x7 surface was first imaged in 1982. (e) STM for 
operation in a scanning electron microscope to allow gradual magnification of the sample from the millimeter range to the atomic scale. The design concept of this 
STM was aimed at maximized rigidity, using a stack of alternating viton and stainless steel plates. (f) With this microscope, the sixfold symmetry of highly-oriented 
pyrolytic graphite (HOPG) was imaged for the first time in 1986 (courtesy of Christoph Gerber).

(b)(a)

(d)(c)

(f)(e)
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It took the scientific community a while to verify these 

results obtained at the IBM Research Laboratory in Zurich in 

1983. The confirmation by other groups4,5 came roughly two 

years later at a workshop in Oberlech in the Austrian alps in 1985, 

generating great excitement among the participants. During the 

years the device went through a series of improved alterations 

and it was in 1986 that with a newer type (Fig. 1e) the sixfold 

symmetry of the atomic arrangement of graphite could be shown 

for the first time6 (Fig. 1f), indicating the enormous potential of 

the instrument. In the same year, Gerd Binnig and Heinrich Rohrer 

shared the Nobel Prize in Physics “for their design of the scanning 

tunneling microscope“. 

Moving beyond the fledgling state of the device, Scanning Tunneling 

Spectroscopy (STS) was  introduced7,8. A powerful technique probing 

the local density of electronic states (LDOS) and band gap of surfaces 

and materials on surfaces at the atomic scale. Generally, STS involves 

observation of changes in constant-current topographs with tip-sample 

bias, local measurement of the tunneling current versus tip-sample 

bias (I-V) curve, measurement of the tunneling conductance, dI / dV, 

or more than one of these. Furthermore, imaging individual molecules 

on surfaces were shown for the first time9. At the same time ballistic 

electron emission microscopy (BEEM) was proposed as one of the first 

applications of the scanning tunneling microscope10,11.

Leaving adolescence of the technique definitely behind happened 

when researchers at the IBM Research Lab in Almaden, California, used 

the instrument to write the IBM logo with 35 xenon atoms on a nickel 

surface12, and later moving iron atoms on a copper surface to make 

a quantum corral13 (Fig. 2), and visualizing the quantum mechanical 

effect of standing waves in a two dimensional electron gas14. Inelastic 

Electron Tunneling Spectroscopy (IETS) was the next important step 

reaching the limit of sensitivity with vibrational spectroscopy15, that 

of addressing a single bond. The ability to measure spatially resolved 

vibrational intensity with sub-Angstrom resolution in single molecules 

makes it possible to directly determine quantitatively a number of 

fundamentally important physical and chemical processes. 

Ever since the initial decade the STM has changed surface 

science to a great extent and so far led to a much more 

comprehensive understanding of the fundamental aspects of 

matter. The impact of this fact is shown in many fields, e.g. high 

temperature superconductivity16-19 (Fig. 3), spin polarisation20, 

Fig. 2 Elliptical ring of 36 cobalt atoms creating a quantum mirage that may 
lead to an efficient way of moving information within future atom-scale circuits 
and computers. When a single cobalt atom (protrusion on the left) is placed at 
one of the two focus points of the elliptical ring, some of its properties suddenly 
appear at the other focus (protrusion on the right), where no atom exists 
(courtesy of IBM Research Almaden).

Fig. 3 Scanning tunneling microscopy image of a high Tc superconductor thin 
film of YBa2Cu3O7-x grown by pulsed-laser deposition (image size 1 μm2). 
The screw dislocations defects were discussed as possible pinning centers for 
vortices (courtesy of Hans Peter Lang).

Fig. 4 (a) 1st AFM. The approach was done using a STM for distance control. The 
original instrument is on permanent exhibition at the Science Museum, London 
(UK). (b) First atomic resolution with AFM on highly oriented pyrolytic graphite 
(HOPG) (courtesy of Christoph Gerber).

(b)

(a)
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quantum information21, self-assembly and adsorption of organic 

and biomolecules at surfaces22,23, nanocatalysis24,25, molecular 

electronics26,27, imaging defect atoms beneath the surface28 

and reading the genetic code of a DNA sample with a new 

sequencing technique29.

Atomic force microscope
The Atomic Force Microscope (AFM) made its entrance in 198630 

(Fig. 4a), as a consequence that its predecessor the STM lacked the 

ability of imaging nonconductive surfaces and outright insulators. Since 

its invention in 1986, the AFM has to a certain extent surpassed the 

STM and proved its suitability in various fields of application. As with 

the STM, the AFM relies on a sharp tip that is scanned over a surface. 

This tip is part of a cantilever that can measure forces down to the lower 

piconewton range. In a sense the AFM resembles a record player — the 

forces between the surface and the tip cause the cantilever to bend in 

the vertical direction, and by measuring this deflection, it is possible 

to produce an image of the surface with atomic resolution31 (Fig. 4b). 

The forces, which can be attractive or repulsive, depend on the nature 

of the interaction between the tip and the surface being investigated. 

First designed as an instrument to image the surfaces of nonconductive 

materials32,33 with high lateral and vertical resolution, the technique 

has been adapted for various environments, such as vacuum, fluidics, 

ambient, low temperatures and magnetic fields, as well as for chemistry 

and biology applications34. The capability to investigate surfaces with 

unprecedented resolution using this technology introduced a wealth of 

related techniques using probes with local interaction. The interaction 

force may be the interatomic forces between the atoms of the AFM 

Fig. 5: (a) Friction on the atomic scale can be switched on/off by electrostatic actuation differentiating between stick-slip and the superlubricity regime (courtesy of 
Ernst Meyer, University of Basel). (b) Magnetic force microscopy images of Bit Patterned Media with 50 nm center-to-center spacing supplied by J. Ahner, Seagate 
Freemont. Taken at 17 K, the images show the same area after magnetic fields are incrementally applied perpendicular to the plane of the sample. Bright (dark) dots 
are magnetised in the direction opposite (parallel) to the tip magnetisation. The images were taken in constant height MFM mode on the Nanoscan PPMS-AFM by T. 
V. Ashworth, Nanoscan AG, Dübendorf, Switzerland. Nanoscan AG (www.nanoscan.ch) produces the PPMS-AFM, a variable temperature, variable magnetic field SPM 
designed to fit the Quantum Design PPMS ® (San Diego, CA 92121-3733, USA). The PPMS-AFM was designed in collaboration with Empa, Swiss Federal Laboratories 
for Materials Testing and Research, Überlandstrasse 129,  CH-8600 Dübendorf, Switzerland (courtesy of T. V. Ashworth, NanoScan AG, Dübendorf, Switzerland). (c) 
Three-dimensional noncontact AFM spectroscopy above the insulating surface of KBr(001): (i) topography, (ii) Z-distance dependence of the conservative and (iii) 
dissipative force across the direction leading towards atomic tomography (courtesy of S. Kawai, University of Basel).

(b)

(a)

(c)
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tip and those of a surface, short-range van der Waals forces or long-

range capillary forces. Investigation of friction forces and stick–slip 

processes35  has led to major advances in tribology36,37 (Fig. 5a). 

Modifying the AFM tip chemically allows various properties of the 

sample surface to be measured38,39. The AFM tip can be driven in an 

oscillating mode to probe the elastic properties of a surface (elastic 

modulus spectroscopy40). Local charges on the tip or surface lead to 

electrostatic forces between tip and sample, which allow a sample 

surface to be mapped, i.e. local differences in the distribution of electric 

charge on a surface (electrostatic force microscopy41) to be visualized. 

In a similar way magnetic forces can be imaged if the tip is coated with 

a magnetic material, e.g. iron, that has been magnetized along the tip 

axis (magnetic force microscopy42, see Fig. 5b). The tip probes the stray 

field of the sample and allows the magnetic structure of the sample to 

be determined. A strong dependence of the resolution on the tip–sample 

distance is observed. Information on force gradients can be obtained 

by cantilever oscillation techniques. At high oscillation frequencies 

(cantilevers with high resonance frequency), further information on 

interatomic forces between tip and sample can be obtained. Depending 

on the oscillation amplitude the terms ‘tapping mode’ or ‘dynamic force 

microscopy’ are used30,43. Dynamic force microscopy is able to provide 

true atomic resolution on various surfaces under ultrahigh vacuum 

conditions44 and allows force spectroscopy on specific sites45 leading to 

atomic scale tomography46,47 (Fig. 5c). Material properties can be locally 

discerned using ultrasonic force microscopy48. Various other quantities 

can be measured if the tip is functionalized as a local measurement tool, 

e.g. as a very small thermocouple to measure temperature differences 

in scanning thermal microscopy49. Locally resolved measurement 

of the chemical potential is the goal of Kelvin probe microscopy50, 

whereas the capacity change between tip and sample is evaluated in 

scanning capacitance microscopy51. In very recent developments by 

introducing damping non-conductive dynamic force microscopy52 

and nanomechanical holography53 it became possible to visualize and 

monitor molecules or nanoparticles beneath the surfaces in a non-

invasive manner (Fig. 6).

Another offspring of the STM is the scanning ion-conductance 

microscope54 (SICM). It consists of an electrically charged glass micro- 

or nanopipette probe filled with electrolyte lowered toward the surface 

of the sample (which is non-conducting for ions) in an oppositely 

charged bath of electrolyte. As the tip of the micropipette approaches 

the sample, the ion conductance and therefore current decreases since 

the gap through which ions can flow, is reduced in size. Variations in the 

ion current are measured by an amplifier, and are used as a feedback 

signal by a scanner control unit to keep the distance between pipette 

tip and sample constant by applying corresponding voltages to the 

Z-piezo drive during the scanning procedure. Therefore, the path of the 

tip follows the contours of the surface.

In addition to imaging surfaces, AFM can also be used to modify 

surfaces and perform molecular manipulation down to the level of 

individual molecules or atoms55. By depositing, removing material from 

the tip and/or sample surface, a surface can be modified locally for 

the  storage, retrieval and erasing of information56, switching or direct 

patterning of non-volatile memory nanostructures in doped SrTiO3 

single crystals57-60 (Fig. 7). Dip-Pen Nanolithography61,62 (DPN) is a 

scanning probe nanopatterning technique in which an AFM tip is used 

to deliver molecules to a surface via a solvent meniscus, which naturally 

forms in the ambient atmosphere (Fig. 8). This direct-write technique 

offers high-resolution patterning capabilities for a number of molecular 

and biomolecular ‘inks’ on a variety of substrates, such as metals, 

semiconductors, and monolayer functionalized surfaces. The operation 

mode of acquiring force distance curves (measurement of forces as a 

function of tip–sample separation) allows to draw conclusions regarding 

the material characteristics of surfaces and their chemical properties63. 

With bonds established between the tip of a scanning force microscope 

and a molecule tethered to a surface, force can be exerted very locally 

on a single molecule and thus the strength of bonds and the forces 

required to break individual bonds can be investigated (force distance 

spectroscopy and single-molecule spectroscopy64,65). Mechanical 

analysis regarding stiffness of live metastatic cancer cells using AFM 

allows local diagnosis of the health condition of cells66.

The mechanical detection of electron or nuclear magnetic 

resonance (magnetic resonance force microscopy, MRFM67) has 

shown improved sensitivity compared to induction-based techniques 

Fig. 6 Intracellular imaging of aspirated nanoparticles using ultrasonic 
holography. The signal access module (SAM) provides the instantaneous 
location of the reflected laser beam as monitored by a position-sensitive 
detector (PSD). The dynamics of the cantilever is presented at the input of 
a lock-in amplifier. The local perturbation in the coupled oscillations of the 
ultrasonic-driven microcantilever – macrophage system is monitored with 
the lock-in using the difference frequency fc – fs as reference. By mapping the 
strength of the coupling in a scanned area of the cell, a phase image emerges 
that contains information on the buried single walled carbon nanohorns 
(SWCNHs). PZT: actuation piezo (courtesy of Thomas Thundat, Oak Ridge 
National Laboratory).
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(Fig. 9). This technology has gained some 15 orders of magnitude 

since its introduction68 and its lateral resolution has entered the 

nanoscale69. The current spatial resolution of the device is 4 nm 

allowing the detection of 35 nuclear spins as compared with current 

magnetic resonance imaging (MRI) technologies still operating in the 

millimeter or micrometer scale. As a result a three-dimensional image 

of a tobacco virus could be shown for the first time70. Single nuclear 

spin detection seems to be achievable in a foreseeable time which 

undoubtedly will have great impact, e.g in structural biology in locally 

Fig. 7 Writing and erasing nanowires at the LaAlO3/SrTiO3 interface. (a) Schematic diagram of the experimental set-up for writing a conducting wire. A voltage-biased 
AFM tip is scanned from one electrode towards a second one in contact mode. The tip generates an electric field that causes a metallic q-2DEG to form locally at 
the interface under the route of the tip. (b) Conductance between the two electrodes measured with a lock-in amplifier as a function of the tip position while writing 
a conducting wire with 3V bias applied to the tip. A steep increase in conductance occurs when the tip reaches the second electrode. (c) Schematic diagram of the 
experimental set-up for cutting a conducting wire. The negatively biased AFM tip moves in contact mode across the conducting wire. The tip erases the metallic 
q-2DEG locally when it crosses the conducting wire. The conductance between two electrodes is monitored as the tip scans over the wire. (d) Conductance between 
the two electrodes measured as a function of the tip position across the wire, while cutting the wire with the tip biased at −3V. A sharp drop in conductance occurs 
when the tip passes the wire (courtesy of Jeremy Levy, University of Pittsburgh, U.S.A., and Jochen Mannhart, University of Augsburg, Germany).

(b)(a)

(c) (d)

Fig. 8 Schematic representation of DPN. A water meniscus forms between the 
AFM tip coated with octadecane thiol (ODT) and the Au substrate. The size of 
the meniscus, which is controlled by relative humidity, affects the ODT transport 
rate, the effective tip-substrate contact area, and DPN resolution (reprinted 
with permission from61.

Fig. 9 A representation of a state of the art magnetic resonance force 
microscopy (MRFM) apparatus. A sample – shown here schematically as a 1H 
spin – is attached to the end of an ultrasensitive cantilever and positioned close 
to a magnetic tip.  A rf current irf passing through a copper microwire generates 
an alternating magnetic field.  We modulate irf to induce periodic 1H spin-flips. 
The resonant slice represents those points in space where the total field B 
matches the magnetic resonance condition for the 1H spin. When the 1H spin is 
scanned through the resonant slice, it undergoes periodic inversion.  These spin-
flips result in a small alternating force between the 1H spin and the magnetic tip, 
causing the cantilever deflect periodically. In this way, we can image the three-
dimensional 1H density in an sample (courtesy of Martino Poggio, University of 
Basel, Switzerland).
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mapping a surface with chemical resolution. The development of a 

technique that might be able to provide a chemically resolved image 

of a sample surface (chemical force microscopy) has revealed that the 

cantilever itself is a very sensitive tool for observing chemical reactions 

and processes. 

Nanomechanical sensing
Another broad area of application is chemical and biological sensing71,72 

(Fig. 10). In this approach the absorption of molecules onto the 

cantilever allows them to be detected because they change the mass, 

and hence the resonance frequency of the cantilever73. However, in 

physiological environments, the absorption of biomolecules (such as 

DNA74-76, proteins, peptides and antibodies77) is detected by changes 

in surface stress in a way that could have advantages over standard 

biomolecular techniques. In general, the possibilities offered by coating 

the individual cantilevers in an array with layers to which only particular 

types of biomolecules can attach are enormous78-80.

Extraterrestrial, scientific and economic 
impact
Indeed, even the sky is not the limit for AFM technology. The Rosetta 

mission to comet 67P launched by the European Space Agency in 2004 

includes an AFM in its MIDAS (Micro-Imaging Dust Analysis System) 

instrument. The goal of this mission, which is expected to touch down 

on 67P in 2014, is to analyze particle size distributions in cometary 

material. NASA‘s Phoenix mission to Mars in 2008 included an AFM for 

similar studies (Collaboration between the Universities of Neuchâtel 

and Basel, as well as with Nanosurf GmbH). Today these methods are 

still making a tremendous impact on many disciplines that range from 

fundamental physics and chemistry through information technology, 

spintronics, quantum computing, and molecular electronics, all the way 

to life sciences. Indeed, over 6,000 AFM-related papers were published 

last year alone, bringing the total to more than 70,000 since it was 

invented, according to the web of science, and the STM has inspired a 

total of 20,000 papers. There are also at least 500 patents related to 

the various forms of scanning probe microscopes. Commercialization 

of the technology started in earnest at the end of the 1980s, and 

approximately 11,000 commercial systems have been sold so far to 

customers in areas as diverse as fundamental research, the car industry 

and even the fashion industry. There are also a significant number 

of home-built systems in operation. Some 40–50 companies are 

involved in manufacturing SPM and related instruments, with an annual 

worldwide turnover of $350 million. 

Nanotechnology quo vadis
What does the future hold? Nanotechnology is still dominated to 

a certain extent by the top down approach where miniaturization 

plays a crucial role. However, there is a worldwide effort of meeting 

the bottom-up approach of self-assembly and self-organisation that 

has been so successfully implemented in the natural world trying 

to unravel nature’s secrets on a nanometer scale to create a new 

generation of materials, devices and systems that will spectacularly 

outperform those we have today in information technology, medicine 

and biology, environmental technologies, the energy industry and 

beyond. As we understand better how nature is doing ‚things‘ on 

a fundamental level, achievements like clean chemistry or clean 

processing81.82 will emerge along with it how to handle the waste 

problems, not polluting the environment. New smart materials, 

hybrid or heterostructured, as well as carbon nanotubes83, a variety 

of nanowires84 or graphene85,86 could be ingredients for novel energy 

saving devices. In order to understand the whole functionality of 

a cell Systems Biology Institutes have been established with the 

hope of artificially synthesizing a cell in a bottom-up approach87. 

Nanomedicine including non-invasive diagnostics88 will be more and 

more on the agenda fighting diseases on the molecular level, e.g. 

new kind of drug delivery systems based on peptides89,90 or block 

co-polymer nanocontainers91 are investigated as possible carriers to 

target carcinogenic cells92. Biology is driven by chemistry however 

the scaffold, the gears, the knots and bolts, e.g in  cell membranes is 

nanomechanics, a template orchestrated by nature worthwhile trying 

to copy and implementing in novel nano devices. Scanning Probe 

Microscopy and related methods will still play an important role in 

many of these investigations helping to capitalize on this fundamental 

knowledge, beneficial for future technologies and to mankind. 

Fig. 10 Schematic representation of a combined DNA and protein 
microcantilever array sensor (COMBIOSENS). Cantilevers 1, 2, 5 and 6 
are functionalized with single stranded DNA molecules for detection of 
hybridization with the complementary strand, but only the sequence on 
cantilever 2 matches the complement present in the liquid environment, and 
therefore some DNA double-strand molecules have already formed on the 
surface of the cantilever. Microcantilever 3 is functionalized with double-
stranded DNA for detection of transcription factors that bind to specific DNA 
sections. Cantilevers 7 and 8 are functionalized with proteins and antibodies, 
respectively. These sensors can specifically detect other proteins and antigens 
(courtesy of H.R. Hidber, University of Basel).
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