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bstract

Measurement of kinetics using microarrays requires adapted experimental analysis for data evaluation and normalization. Here we present a

ew algorithm based on alignment of data, which solves inconsistencies of current normalization methods utilizing baseline correction. Our results
how that this method leads to better data consistency and relative errors four times smaller on average.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Microarray techniques are of indisputable value for today’s
enomic and proteomic research in biology and medicine.
raditionally, these methods do not directly provide kinetic

nformation. In recent years, modern microarray technologies
volved which will enable the researcher to design new kinds
f experiments involving time-resolved measurements. Such
echniques include surface plasmon resonance imaging [1],
llipsometry [2], surface acoustic wave sensors [3], nano-wire
ased [4] and cantilever-based methods [5].

Data processing plays an important role in the interpreta-
ion of time-resolved data from microarray measurements. Since
hese signals are based on extremely small sensor areas (in the
m2 range) relatively large variations may occur during func-

ionalization with probe molecules and detection of the signal
pon binding of an analyte. This leads eventually to large rel-
tive errors in the data compared to signals from sensors with
arge signal-integration areas. To get an estimate of data quality,

easurements are performed in redundancy with several sensors

unctionalized in the same way. These different channels (pos-
tive and negative controls) are then averaged. In general the
verage of the references (negative control) is subtracted from
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he average of positive controls to remove contributions from
nspecific interactions (differential signal).

However, averaging of multiple signals is problematic for
inetic data: before averaging, the data must be corrected for dif-
erent offsets and drifts. Traditionally this is done by a baseline
orrection whereby an initial measurement period is analyzed
n the absence of an analyte. The signal recorded during this
nitial period is fitted by a linear baseline, which is then extrap-
lated and subtracted from the raw measurement curve. Such a
rocedure evokes several problems, which are not observed in
easurements involving only one reference and one positive sig-

al. (a) The initial linear fit is prone to errors due to noise. These
rrors are amplified when extrapolated to the complete duration
f the measurement. (b) Linear progression of drift might be
n unjustified assumption. If only one negative and one positive
ignal are recorded, the reference may be simply subtracted.

Therefore it is reasonable to assume that the relative error
f the average will increase over time. This is in contradiction
o the theory that real measurements can be interpreted as ideal

easurements plus noise. In this case the relative error would
e constant.

Normalization of microarray data is a significant problem,
hich needs to be solved to be able to compare data from

ifferent experiments and correct for local variations of the indi-
idual sensors. In the case of nanomechanical microarrays the
echanical response of individual sensors can be tested prior to
(biological) experiment by a heat test [6,7].

mailto:thomas.braun@unibas.ch
dx.doi.org/10.1016/j.snb.2007.05.031
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The use of baseline correction methods may increase the
rrors due to inaccurate offsets as opposed to the normaliza-
ion test done before. Here we propose an alignment-based

ethod that utilizes additional normalization factors prevent-
ng such errors and leading to optimal data extraction in kinetic

icroarray experiments. In short, this alignment procedure shifts
nd rotates the curves for optimal overlapping of all data-sets
n magnitude and time as well as in a rotation angle for the
omplete duration of the experiment. Additionally a factor scal-
ng the data in magnitude is introduced which is responsible
or the normalization. Here we use a normalization coefficient
erived from the heat test to demonstrate the normalization
outine.

In the following, we shall use a test data-set acquired in a
tandard static nanomechanical cantilever experiment (pH mea-
urement, similar experiments are discussed in detail in Ref.
8]) to compare the effects of baseline correction and align-
ent methods for the processing of cantilever-based microarray

ensor data.

. Materials and methods

.1. Reagents

Na2HPO4, NaH2PO4, NaCl, hexadecane-1-thiol (HDT),
6-mercapto-hexa-decanoic-1-acid (MHA), HPLC-grade water
nd ethanol were all purchased from Fluka (Buchs, Switzerland).
HA and HDT were dissolved in ethanol to a final concentra-

ion of 4 mM each. Two different pH solutions were prepared
or the experiments: NaH2PO4 was dissolved in water to a final
oncentration of 100 mM resulting in a pH of 4.3 (low-pH solu-
ion). Na2HPO4 was dissolved in water to a final concentration
f 100 mM resulting in a pH of 8.6 (high-pH solution). Both
olutions were adjusted to 300 mM in ionic strength using 1 M
aCl.

.2. Cantilever preparation

Microfabricated arrays with eight identical silicon cantilevers
t a pitch of 250 �m, a length of 500 �m, a width of 100 �m
nd a thickness of 1 �m (spring constant of 0.0025 N/m) were
rovided by the Micro- and Nanomechanics group at the IBM
urich Research Laboratory. The cantilevers were prepared as
escribed in detail elsewhere [9,10]. Briefly, the cantilever arrays
ere cleaned in Piranha solution and then coated on their upper

ide with 2 nm of Ti (99.99%, JohnsonMatthey), followed by
0 nm of Au (99.999%, Goodfellow), using an Edwards L400
-beam evaporator operated at a base pressure below 10−6 mbar
nd evaporation rates of 0.07 nm/s. Afterwards, the cantilever
rray was functionalized using eight micro-capillaries (inner
iameter 150 �m; from Garner Glass, Claremont, CA), one for
ach cantilever, filled with either MHA or HDT solution, thereby

ctivating the two groups of four cantilevers either with a pH
ensing layer (MHA) or a reference layer (HDT). After 20 min,
he functionalized cantilever array was washed twice in low-pH
olution.

p
c
m
h
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.3. pH experiment

The functionalized cantilever array was inserted into a liquid
hamber (volume: 50 �l) and mounted at an angle of 11◦ with
espect to the incident laser beam (time-multiplexed vertical-
avity surface-emitting laser; wavelength 760 nm, Avalon
hotonics, Zurich, Switzerland). The laser beam was redirected
y a mirror to a PSD (position-sensitive detector, SiTek, Partille,
weden). Data were acquired using a multifunctional data-
cquisition board (National Instruments, Austin, TX) driven
y LabView software. The software also controlled the liquid-
andling system of the setup, the syringe pump (GENIE, Kent
cientific Corp., Torrington, CT), and a 10-position valve sys-

em (Rheodyne, Rohnert Park, CA). The entire setup was placed
nside a temperature-controlled box (Intertronic; Interdiscount,
witzerland), which was equilibrated to 23 ◦C. The cantilevers
ere equilibrated in low-pH solution before and after each injec-

ion of high-pH solution. Three pulses of high-pH solution
ere conducted. In the first injection, 200 �l high-pH solu-

ion was injected at a flow rate of 20 �l/min (section II of
ig. 3A–D). Subsequently, the cantilevers were equilibrated
ith an injection of 200 �l low-pH solution at a flow rate of
0 �l/min. The following two pH changes (sections IV and
, VI and VII) were performed under a constant flow rate
f 20 �l/min while switching from one pH solution to the
ther.

.4. Data processing

All data-processing algorithms were implemented in the
GOR pro data analyze environment (www.wavemetrics.com).
he operations were implemented in a framework of a
antilever-sensor processing tool called NOSEtools [11,6]
http://web.mac.com/brunobraun/iWeb/NOSETools/). For de-
ails see Section 3.1.

. Results

As a test system we measured the pH-dependent detection
f eight cantilevers in one microarray. Individual cantilevers
ere functionalized either with 16-mercapto-hexadecanoic-1-

cid (MHA, cantilevers 5–8) as pH sensing cantilevers or with
exadecane-1-thiol (HDT, cantilevers 1–4) as references. To run
he test we used a cantilever array with known large mechanical
ariations among the individual cantilevers for testing purpose.
tandard experiments are usually not performed with such inho-
ogeneous arrays.
One of the advantages of nanomechanical cantilever sensors

s the option to perform a normalization test prior to the experi-
ent. This test allows to assess the mechanical homogeneity of

he cantilevers in the array by performing a heat test: the mea-
urement chamber containing the cantilever array was heated
by 2 ◦C for 30 s) and allowed to cool again to the working tem-

erature. The asymmetric gold coating (see Section 2) forced
ompressive bending of the cantilevers due to the different ther-
al expansion coefficients of gold, titanium and silicon. These

eat tests are in general highly reproducible.

http://www.wavemetrics.com/
http://web.mac.com/brunobraun/iWeb/NOSETools/
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These data were used to normalize the pH-experiment which
as performed directly after the heat test. During this part of the

xperiment, two different buffers with a different pH (but iden-
ical ionic strength) were injected in sequence for three pulses
see Section 2 for details).

All data analysis steps were performed in two different ways:
rst with baseline correction and normalization as described
efore [6] and second by aligning and normalization of the data
see next Section).

.1. Alignment algorithm

The alignment of the data was done by pairwise alignment of
ne curve on a reference. The program minimized the distance
f the transformed data point y(x) = E(y(x + �x)) + �y + sin(α)x
with �x the shifting in the time axis, �y a constant offset and
the rotation angle, E is an expansion/compression coefficient

sed for data normalization) to the reference data point yref(x)
sing a standard Levenberg–Marquardt algorithm [12].

The alignment-reference for the first round was obtained by
veraging all original raw data-sets. In this way the influence of
single raw curve on the alignment result is minimized (pseudo

eference-free alignment). The alignment was performed in
everal rounds. After every round a new reference of the shifted
nd rotated curves was calculated, and in the next round the
riginal data-sets were aligned on the new reference again
see Fig. 1). At the end of an optimization round, the aligned
urves were compared to the reference and a cross-correlation
Pearson) coefficient reflecting the similarities between the
urves was calculated. The alignment improved with the num-
er of performed rounds. This was reflected in the calculated
ross-correlation coefficients asymptotically approaching an
pper limit (data not shown).

The operator can influence the alignment algorithm with
oundary conditions (black boxes in Fig. 1). First, limits for
he shifts (�x, �y) and for the maximal rotation angle α can
e given. If expansion is allowed, a maximal expansion or com-
ression factor E can be set. Second, a list with increasing cross-
orrelation coefficients for every round can be created. Curves
hich revealed a lower cross-correlation coefficient than a given

hreshold in a specific round were removed from the active
urve pool. This was never the case in all alignment operations
erformed on the experimental data used for this publication.

The factor E was introduced for normalization of the data.
sing a normalized reference to align the heat test data, the
ormalization coefficients were determined prior to the analysis
f the pH experiment. The normalization factors determined
ere carried over to the real experiment and kept constant for

hese alignments (see next Section).
Note that a constant normalization factor E did not change

ignals relative to each other in all our tests (see Supplemental
aterial, Section 1).
.2. Analysis of heat test

Results of the heat test are presented in Fig. 2. Panel A depicts
he baseline corrected data. These data were obtained by sub-

m
i
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racting an extrapolated baseline (between 0 min and 6.5 min)
o remove offsets and drifts. The different magnitudes of can-
ilever responses reflect the different nanomechanical properties
f the individual cantilevers and are not due to varying laser posi-
ions on the cantilever as visually monitored by a CCD camera.
he peak heights obtained for this cantilever array varied from

oughly 200 nm up to more than 800 nm. This is atypical for
tandard cantilever arrays but useful to evaluate the proposed
ata analysis routine.

Fig. 2, panel B shows the normalized heat-test data which was
alculated as follows: from the baseline-corrected data a peak
earch was performed. In a second step all data were divided with
he individual peak heights of the cantilevers and multiplied with
he average peak height of all cantilevers. This factor was later
sed for the normalization of the subsequent pH experiment.

For comparison, the heat-test data was aligned as described
n Section 3.1 (see Fig. 2 panel C). To find the normalization
oefficients, the reference was always normalized with its peak
eight and multiplied with the averaged peak heights of the base-
ine corrected data. This allows for a direct comparison of the
wo results. The determined normalization coefficients were car-
ied over to the pH experiment. The average of the normalization
oefficient was found to be 1.1. Time shifts were negligibly small
maximally 1.2 s, which has to be compared to the time for the
ultiplexed readout of all eight cantilevers of 2.9 s).

.3. Analysis of pH experiment

The pH experiment was performed by sequential injection of
wo buffers of different pH but equal ionic strength. In Fig. 3A–D
he time span where the low-pH buffer is flowed through is indi-
ated with a white and the time periods with high-pH solution
re marked with a gray background.

.3.1. Baseline correction and normalization
To compare the alignment with the baseline-correction

ethod, the start sequence of the raw data (section I in Fig. 3)
as fitted with a linear model between 0 min and 10 min. The
aseline was extrapolated to the whole duration of the measure-
ent and subtracted from the raw data. The result is depicted

n Fig. 3A. In a second step, the data-set was divided with the
ormalization factors obtained from the heat test as described in
ection 3.2. The normalized data are displayed in Fig. 3B.

.3.2. Alignment of pH experiment data
To ensure a better comparison between the two processing

ethods, we used the initially baseline corrected data depicted
n Fig. 3A as input data-sets. The reference for the first alignment
ound was obtained by averaging these input data. The alignment
as performed using the constant normalization coefficients

rom the heat-test data alignment. This stretches or compacts
alization of the baseline correction approach. This process is
ndependent from initial offsets and additional baselines (see
upplemental material, Section 1). Fig. 3C shows the result of

he alignment.
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Fig. 1. Alignment algorithm utilizing the average of the input curves as start reference. The alignment was optimized in several rounds (box I). The optimization
was performed for every round in two steps. First, the raw curves were aligned to the reference (box II). Second a new reference based on the shifted and rotated
curves was created. A cross-correlation coefficient (Pearson) was calculated between every curve and the new reference. Curves with correlation coefficients below
a threshold were deleted from the active curve pool (box III). At the beginning of every optimization round, a new reference from the shifted and active curves was
calculated.



T. Braun et al. / Sensors and Actu

Fig. 2. Analysis of the heat test. MHA functionalized cantilevers (pH sensitized)
are depicted in gray, HDT coated ones (pH insensitive) with black lines. (A)
baseline corrected raw data, (B) normalized data after baseline correction, (C)
alignment of baseline corrected raw data with adjustable normalization factors.
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nsets in panel (B) and panel (C): peak region at higher magnification, also
ndicated by a box in the main graph. The markers (every fourth data point)
ndicate the cantilever (CL) number (legend).

.3.3. Differential signal
The aligned and normalized data-sets were averaged and

he corresponding standard errors calculated. The HDT average
as subtracted from the MHA average and the error prop-

gation estimated. The results are shown in Fig. 3D. The
lobal-mean standard-error for the aligned data was 11.4 nm
upper curve) and for the baseline corrected data 46.8 nm (lower
urve).

The relative errors of the differential signal at high pH 8.6
sections II, IV, and VI in Fig. 3) were calculated and are sum-

arized in Table 1. On average, the relative error of the pH
easurements was four times lower if the curves were aligned

n contrast to baseline corrected data analysis.

able 1
elative errors of the differential signal for high-pH solution (differential
anomechanical response of pH sensitized cantilevers to jumps of 4.3 pH units)

Section

I IV VI

aseline corrected 8.7% 11.9% 17.5%
ligned 3.2% 3.3% 2.8%

he section numbers correspond to the sections in Fig. 3.
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All the calculations were also performed with the raw data
ithout normalization (baseline correction as shown in Fig. 3,

ligning with normalization factors E = 1; see Supplemental
aterial, Section 2). Comparing the averages of the aligned and

aseline-corrected data revealed that the aligned data resulted
n better data consistency and standard errors. However, the cal-
ulation of the differential signal (MHA data minus HDT data)
or the not-normalized averages did not show significant fea-
ures, neither for aligned nor for the baseline corrected data (see
ection 4).

. Discussion

Comparison of data evaluation via baseline-correction with
he alignment-based approach revealed that the latter yielded

ore precise results (in average four times smaller relative
rrors, see Table 1). This finding is of outmost importance to
nterpret data only slightly above noise level and can massively
nhance evaluation of experiments at the sensitivity limit of
inetic microarray devices.

We have chosen a test data-set with several challenges to
ush data processing to its limits: large variations of individ-
al nanomechanical properties and large noise level in one
f the cantilever responses due to instabilities in the vertical-
avity surface-emitting laser operation (cantilever No. 5, Fig. 2).
urther the positively functionalized cantilevers (MHA) show
ystematically lower heat-peak deflections as the negative ones
HDT, see Fig. 2A) due to different cantilever stiffness. This
s never observed in this extent with standard quality cantilever
rrays. Therefore, data evaluation without correction of differing
echanical properties through normalization led to a differen-

ial signal with insignificant deflection changes upon pH change
Supplemental material, Section 2). The heat test represents a
re-calibration of the response of the mechanical signal trans-
ucer. Such a test would relate to a chemical activation analysis
sed in other microarray technologies prior to the experimental
xposure to (bio)-analytes. Such a pre-calibration is not possible
ith traditional microarray technologies and represents one of

he advantages of nanomechanical sensing arrays.
The applied alignment algorithm is fast, reproducible and

eliable. Moreover it is simple to use. It is only possible to
nfluence the outcome by changing the shifting, rotation or nor-

alization factor limits. In all our alignment tests the applied
imits never changed the outcome of the alignment or the analysis
f the experiment, as long as they were set wide enough. Further-
ore, the choice of more stringent cross-correlation coefficients

llows to set objective criteria for data exclusion from defective
ensors in very large arrays. Optionally the alignment algorithm
llows to shift data in time. The observed time shifts were always
elow the spacing in time of data points due to the multiplexed
eadout of the individual sensors. This optional time shift could
e of great value for the data analysis of large sensor arrays with
ong distances for the ligands to diffuse to the binding sites. In

his case, the positive and negative control average also must
e synchronized by alignment. In the analysis here time shifts
ere allowed but only negligible shifts were observed of max-

mally 2.9 s. This option did not change the final outcome at
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Fig. 3. Normalization and averaging of the pH-experiment. Injection periods with high-pH buffer are indicated with gray boxes, while low-pH buffer periods with
white background. (A) baseline corrected raw data without normalization, and the starting point of all subsequent calculations, (B) conventional normalized data (the
baseline corrected data from (A) were divided by the normalization factor derived from the heat test), (C) alignment and normalization by the new algorithm (the
normalization factors were derived from heat test analysis), (D) differential signal of averaged aligned and baseline corrected data-sets (MHA − HDT). The error
b (A–C
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ars indicate the propagated standard errors of the averages. Note that for panels
o facilitate the interpretation. The markers label every 100th data point. Marke
y white circles.

ll and these tiny time shifts are not the reason for the large
mprovement of the standard and relative errors as compared to
aseline-corrected data (see Fig. 3 and Table 1).

In the first step, the heat-test data-set was analyzed to get the
ormalization coefficients for both methods (the baseline correc-
ion approach and the analysis by alignment). These coefficients
ere later used to correct the pH data for mechanical inhomo-
eneities between the cantilevers. The analysis of the heat test
Fig. 2) shows clearly that with the alignment procedure the full
haracteristics of the Peltier peak are taken into account (panel
). This finding is in contrast to the baseline corrected normal-

zation procedure, where determination of the peak height in the
eat test is prone to be affected by local noise at the peak region
s seen in the insets of Fig. 2. This is obvious with cantilever
(marker +), where the detection method is running into the
onlinear region of the PSD and is therefore stretched too much
uring normalization by the baseline-correction approach (see
anel B). In the case of aligning the data (panel C), cantilever
does not reach the peak and is flattened, but the rest of the

t
t
n
t

) the axis labels for the HDT data only comprise half the span of the MHA data
panels (A–C) are identical with Fig. 2; in panel (D) the data points are marked

urve is properly aligned to the ensemble of the heat test data.
typical finding is also the large curve spread in the end of

he short measurement which is not observed for aligned data.
ote that the reference for alignment of the heat-test data was
ormalized. To do this, the initial input data was baseline cor-
ected and normalized. For the subsequent optimization rounds
o baseline correction was needed.

In the second step, the pH experiment was analyzed and again
he two methods (baseline correction versus alignment) were
ompared. The data-sets were normalized by the corresponding
ethods with the coefficients found during the heat peak anal-

sis. An analogue analysis without normalization is presented
n supporting materials (Section 2). The comparison of panel

(baseline corrected data-set) and panel B (baseline corrected
nd normalized data-set) in Fig. 3 reveals that the deviation of

he curve drift is improved only marginally by the normaliza-
ion. For some cantilevers the spread even increased. This is
ot only due to errors during determination of the normaliza-
ion factors in the heat test as discussed above, but also caused
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y the erroneous offsets increasing with time introduced by the
nitial baseline correction of the pH data. The latter is due to
he errors during baseline characterization in the beginning of
he experiment, which are amplified over time. The proposed
ormalization/alignment algorithm is independent from such
ffsets and baseline corrections. This is visible in Fig. 3C, where
he overlap of curves is massively improved (compare with panel
). The alignment based normalization of the pH data also
ecreased the measurement errors as compared to the aligning
f raw data without normalization.

Note that these normalization coefficients must be derived
rom tests depending on the nature of the used sensor or trans-
ucer, respectively, but the proposed algorithm is independent
f the used measurement method and normalization criteria.

The alignment is only slightly affected by the large noise
evel as observed in the response of cantilever 5 in Figs. 2 and 3.
ote that such noise influenced baseline correction substantially
ue to introduction of large errors for the initial baseline deter-
ination; these are further amplified over time during baseline

xtrapolation.
In the final operation, the differential signal between the

H sensitive cantilevers (MHA functionalized) and reference
antilevers (HDT functionalized) for both methods (base-
ine correction and alignment) was calculated. For this, the
orresponding signals were averaged and the reference was
ubtracted. The found result is in excellent agreement with
reviously published measurements [9]. The differential signal
Fig. 3D) for aligned and baseline-corrected data reveals that the
ain difference between evaluation methods is not the qualita-

ive development of the differential signal, but mainly the much
igher data quality, which is clearly demonstrated in regard to
he error bars representing the propagated standard error. Table 1
lso clearly shows that the relative error of the differential signal
n baseline-corrected data-analysis increases over time as postu-
ated in Section 1. This is not the case for the differential signal
educed from the aligned data. This will also allow to evaluate
orrectly long-term experiments showing signals at the resolu-
ion limit of the instrument. The four times lower relative error
or the aligned data signals allows to reach higher resolution
nd sensitivities with the same instrument or equal data qual-
ty with less sensor response statistics. Please also note that the
H “insensitive” HDT cantilever also undergoes nanomechani-
al deflection changes upon injection of different pH solutions.
his is induced by chemical reactions on the non-functionalized
ilicon surface (for details see [8]).

The proposed algorithm based on alignment is free from
he assumption of baseline propagation. With constant normal-
zation coefficients E = 1 and provided that time-shifts are not
llowed, the method represents an optimal way of finding the
aseline for all curves before averaging. This avoids the pitfalls
or baseline correction described above. Normalization changes
ata scaling by definition. In all our tests the normalization algo-
ithm used here did not change signals relative to each other.

his finding was independent of the baseline of the curve, e.g.

he outcome of the heat-test data alignment was independent,
hether the input data were baseline corrected before or not

see Supplemental material, Section 1).
[

ators B 128 (2007) 75–82 81

The test data used here posed several hurdles for subsequent
ata processing which were successfully overcome. In addition,
rocessing of standard data-sets from DNA hybridization and
rotein detection experiments confirmed the finding that the
lignment/normalization algorithm proposed here improves the
uality of the results in general (data not shown).

. Conclusions

The alignment of kinetic microarray data resulted in four
imes smaller relative errors for the measurements than evaluated
y baseline-correction. This improvement will facilitate exper-
mental design and data interpretation close to the resolution
imit of the measurement instrument.
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